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Abstraet--A numerical study is presented of the drainage and rupture of the liquid film between two drops 
whose centres approach each other at constant velocity. The considerations are restricted to the 
partially-mobile case (in which the drop viscosity is rate-determining) and to small approach velocities. 
The latter restriction permits a transformation of the governing equations to a single universal form, which 
is solved with the help of boundary integral theory. As in the constant force case, the numerical results 
show the formation of a dimple but the final drainage behaviour differs considerably. Finally, the influence 
of van der Waals forces is investigated and the results are shown to correspond well with a simple model 
proposed earlier for the effective critical film-rupture thickness. 
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1. I N T R O D U C T I O N  

Drop  coalescence processes are an essential feature of  a great number of  industrial and 
environmental liquid-liquid systems. A review of  the current understanding, henceforth referred 
to as paper I, has recently been provided by Chesters (1991). The complex physico-chemical 
hydrodynamics of  coalescence processes induced by drop collisions can be split conceptually into 
three elements: 

• The external flow field which determines the frequency, interaction force and 
duration of  collisions. 

• The internal flow field involved in drainage of  the residual film between the drops, 
for which the initial and boundary conditions are provided by the external flow. 

• The destabilization of  very thin films by colloidal forces, leading to rupture. 

Even in the simplest case of  pure liquids, these elements have yet to be modelled adequately. One 
of  the major  unanswered questions is the dependence of  the film drainage process on the boundary 
conditions provided by the collision, which will not, in general, correspond to the case examined 
to date in the literature, of  constant interaction force. 

In this paper, the problem tackled concerns the drainage and rupture of  a partially-mobile film 
of continuous phase between two drops undergoing a gentle, constant-velocity collision along the 
line of  their centres. The term partial mobility is used here, as in paper I, to indicate that drainage 
is controlled by the motion of  the film surface (the Poiseuille contribution to the film flow being 
negligible in comparison), which in turn is limited by the shear stress exerted by the drop phase. 
The term gentle is used to indicate that only a small portion of  each drop surface is deformed 
significantly. This enables a major simplification of  the governing equations (section 2.1), which 
become the same for unequal drops (radii R, and R2) as for equal drops of  radius R~q, where 

Ri- '  + R f '  [1] 
R~q' = 2 

tTo whom correspondence should be addressed. 
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This regime has been examined by Yiantsios & Davis (1990), who termed it that of full mobility, 
in the viscous, constant-interaction-force limit, in the context of a small drop rising to a 
free interface. Making use of the equivalent-radius construct (R2 = ~ ,  P~q = 2R), together with 
a suitable transformation of the governing equations, their numerical solutions can be shown 
to apply to all constant-force drainage processes (paper I). In a subsequent paper, Yiantsios & 
Davis (1991) extend the considerations on the one hand to the gravity-driven approach of 
coaxially-rising drops and on the other to include the effect of destabilizing van der Waals forces 
(immobile-interface case only). 

While film drainage at a free interface under the influence of gravitational forces provides an 
important example of a constant-force collision, it is probably the only one. In other cases, 
collisions are flow-driven and the interaction force increases as the drops approach, reaching a 
maximum in the absence of coalescence and falling off as the drops separate. The drops may be 
free, as in agitated dispersions, or one or both may be attached, as in the respective cases of filter 
coalescers and injection through porous surfaces. Depending on the collision Reynolds number, 
the interaction force may be due primarily to viscous or inertial forces. The latter case is 
characterized initially by constant approach velocity, this velocity diminishing only when defor- 
mation becomes sufficient to convert a substantial proportion of the kinetic energy of the collision 
into interfacial energy (paper I; Chesters & Hofman 1982). The constant-velocity case is thus of 
some practical relevance, in addition to its interest as a well-defined alternative boundary condition 
for film drainage. 

In section 2, the governing equations and initial and boundary conditions are derived for the 
constant-velocity case in the absence of van der Waals forces. These are then cast into dimensionless 
form, after which the only dimensionless group (a Capillary number) is eliminated by means of 
a transformation of variables, leading, as in the constant-force case, to a universal set of equations 
describing all such processes. The numerical solution of these equations is presented in section 3 
and the similarities with and differences from the constant-force case examined. Both solutions are 
furthermore compared with the plane-film model developed by Chesters (1988). In section 4, van 
der Waals forces are included and their effect on the solutions compared with that predicted by 
approximate considerations (paper I). Finally, in section 5, the regime of validity of various 
approximations underlying the solutions is examined. 

2. G O V E R N I N G  EQUATIONS IN THE ABSENCE OF V A N D E R W A A L S  FORCES 

2. I. The Equations in Dimensional Form 

2.1.1. Underlying approximations 

The film-draining equations are simplified by a number of restrictions/approximations which 
were also applied in the analysis of Yiantsios & Davis (1990): 

(i) The restriction to gentle (axisymmetrical) collisions, involving small deformed 
portions of the drops, implies small film slopes: 

O(hi) << 
1 [2] 

(h~ is the z-coordinate of the interface, i = 1, 2; r is the radial coordinate---see 
figure 1). 

r P 

Figure 1. Choice of coordinates for the description of film drainage. 
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(ii) Considerations are limited to the viscous regime, in which the inertial forces are 
negligible both in the film and in the adjacent dispersed-phase flow (though not 
necessarily in the overall flow involved in the drop collision). 

(iii) The restriction to partial mobility, as defined above, permits the film flow to be 
approximated as plug flow and the influence of viscous normal stresses in the 
film to be neglected, the shear stress exerted by the dispersed phase being 
rate-controlling. 

(iv) The latter statement implicitly neglects the effect on film drainage of any 
variation in pressure or in the viscous normal stress in the dispersed phase. 

(v) Finally, the influence is neglected of body forces due to gravity or to acceleration 
of the reference frame, whose origin is chosen at the film centre (figure 1). 

The regime of validity of (i)-(v) is considered in section 5. 

2.1.2. Flow in the film 

Making use of [2], the continuity and Navier-Stokes equations, applied in an integrated form 
to an element of film, become 

~h 1 ~(rhu) 
dt  = r ar [3] 

and 

= - [4 ]  

(h is the film thickness, h ~ -  h2; t is time; u is the interface velocity or, equivalently, the radial 
component of the film velocity, in view of approximation (iii); z is the shear stress exerted on the 
interface in the r-direction by the film phase; p is the pressure in the film). Note that in view of 
the quasi-parallel character of the film flow, p is constant across the film. 

2.1.3. Flow in the drops 

For the quasi-steady creeping flow in the drops, the continuity and Navier-Stokes equations are: 

V . v  = 0 [5 ]  

and 

--Vpd + / 2  d V2V = 0 [6] 

(the subscript d denotes the dispersed phase; # is the dynamic viscosity; v is the dispersed-phase 
velocity). 

2.1.4. Interface conditions 

The conditions to be satisfied at the interfaces are 

u = v, [7] 

+ ~d = 0 [8] 

and 

Pd --P = °'(Ra I + R{ l ) [9] 

(a is the interfacial tension; Ra and Rb are the principal radii of curvature of the interface). Equation 
[7] expresses continuity of velocity. Equation [8] expresses the requirement that the net tangential 
stress exerted on the interface be zero; note that Td is the same for each interface, since the film 
drainage induces the same flow in each drop, the drop interface being effectively a plane on the 
scale of the drop flow, in view of [2]. Equation [9] is the Laplace condition on the jump in the normal 
stress, neglecting the contibution of the viscous normal stresses [approximations Off) and (iv)]. 
Making use of [2] with the relevant expressions for Ra and Rb, together with the fact that outside 
the deformed region p ~0 so that Pd---2a/R~, [9] yields an equation for each interface: 
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20- :o h, ! oh, h 

and 

20" //O 2h2 ! O h 2 ~  

Subtraction of  [10a,b], yields an equation for the film centre coordinate, z¢: 

02z¢ 1 0z¢ 2 
- -  .-] 
Or 2 r Or R~' 

where 

Integrating [1 l a] twice yields 

[10a] 

[10b] 

[1 la] 

r 2 

Zc - 2Re' [12] 

indicating that the centre surface is spherical (to the first order in the interface slope), with radius 
of curvature Re. Addition of  [10a,b] yields 

2cr a [02h 10h'~ 

p - R e  q 2 ~,~r2 + r ~r ) ,  [131 

indicating that the equations for unequal drops are the same as those for equal drops of radius 

2.1.5. Initial and boundary conditions 

The chosen initial condition is of undeformed drops. From [9], p is then zero and [13] may be 
integrated twice to yield 

r 2 

h = h  0+Re  ~ .  [141 

This should provide a good approximation to the situation of approach from infinity, provided 
the thickness at the film centre h0 is chosen sufficiently large. The outer boundary conditions are 

0h 
p = 0, - V, [15a,b] 

Ot 

at sufficiently large r-values, corresponding to undeformed interfaces (V is the drop approach 
velocity). 

2.2. Transformed Equations 

The first step in eliminating as many as possible of the system parameters #o, or, Req and V is 
to render the variables in the governing equations dimensionless with the help of Req, V and #d: 

r h t '  t V  - zReq p '  pReq " u' u . v' v 
r ' = - - ;  h ' = - - ;  - ; r ' -  " =- V Req Req Req /'/d V ' ~//d V ' = - V '  = - - "  

The new equations contain only one system parameter, the Capillary number, Ca (=#d V/O-). 
This too is eliminated by a suitable transformation in powers of Ca: 

r '  h '  t '  
r* - - - "  h* = " t* = - -  " z* = z'Ca2/3; p* = p ' C a ;  u* = u'Cal/3; v* = v'Ca j/3. - Cal/3, C---~3, Ca2/3 , 

The transformed governing equations now become: 

Oh* 1 O(h*u*r*) 

0t* = r* c3r* ' [3*] 

1 1 l (1  1) 
Z c = 2 ( h l + h 2 ) '  ~ = 2  R-~-RE2 " [lib,c] 
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h* dp* 
"c * = [4*] 

2 dr* '  

V*" v* = O, [5*] 

- V*p~' + V*:v* = O, [6*] 

u* = v * ,  [7*] 

t* + t~' = 0, [8*] 

l (d2h*_t_l dh* ~ 
P*  = 2 - 2 \ d - - ~  r*dr*J' [13"1 

h * = h * + r  .2, at t * = O  [14"] 

dh* 
p * = 0 ,  - - = - 1 ,  a t r * ~ o o .  [15a*,b*] 

dt* 

3. NUMERICAL SOLUTION 

3.1. Method of  Solution 

The relation between ~* and u* implied by the creeping-flow equations [5*] and [6*] is provided 
by the boundary integral theory, applied to the flow in the half space concerned (Davis et al. 1989): 

fo u*(r*) = 4)(r*, r')z*(r') dr', [16a*] 

where 

r' ff~ cos 0 d0 [16b*] 
~b(r*,r')=~-~n (r.2 + r,2 2r .r ,  cos O)l/2 

is an elliptic type Green's function kernel. 
The system of equations [3"]-[15b*] can be solved numerically for the unknowns: thickness, 

pressure, interfacial stress and velocity. Given the film shape [14"] at t* = 0, p* follows from [13"], 
r* from [4"], u* then follows from [16"] and dh*/dt* from [3*]. The new film shape can now be 
computed at a time At* later and the whole process repeated. 

In the calculation of u*, the interface was approximated as flat and unbounded. In practice, we 
must truncate the domain of the interface at some large but finite distance, rbound*, from the axis 
of symmetry. A non-uniform discretization of the interface was employed: a constant, relatively 
small Ar* near the axis of symmetry which is a region of high property gradients, and far from 
this region, progressively larger Ar*. To calculate the integral, a trapezoidal rule is used. 
Fourth-order central-difference approximations were used for the spatial derivatives (dh*/dr*) and 
(d2h*/dr*2); while the (d3h*/dr .3) term was approximated by a second-order central difference. 

The continuity equation [3*] is solved by using a Lax-Wendroff finite-difference scheme of 
second-order accuracy. The values of h* and rbon,d* proved of little influence, provided they were 
chosen sufficiently large. 

3.2. Results and Discussion 

Figure 2 shows the variation of the film thickness h* with r* and t*. The results indicate that 
the drops flatten and then develop a dimple. The development of a dimple is also found in the 
constant-force case (Yiantsios & Davis 1990). 

The variation of the pressure in the film p* is presented in figure 3. The transformed pressure 
at the centre of the film increases as the drops move toward each other until it reaches a value of 
2, indicating the onset of complete flattening (the dimensionless curvature terms d2h*/dr .2 and 
(1/r*)dh*/dr*, which are equal at the film centre, then being zero: [13"]). The size of the flattened 
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Figure 2. Variation of the film thickness during the drainage 
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Figure 3. Variat ion of  the pressure during the drainage 
process. 

region increases with time, as it must since the drop centres continue to approach each other. A 
measure, a, of the radius of  the flattened region may be defined by 

f l  "~'' 2 f 2 o ' ~  F = 2zcrp d r  = z~a - -  [17] t oJ 
(F is the drop interaction force). Figure 4 shows the increase with t* of (a*)2, which is a measure 
of  the interaction force. The time dependence of (a*)2 is similar to that predicted by the simple 
deformation model of  figure 5 (see the appendix), 

(a*)2=½(t *-h*), [18] 

though the actual values of a* are appreciably smaller. As would be expected, the transformed 
radius * rmi,, at which the minimum film thickness is attained, is proportional to a* once flattening 
has occurred (figure 6). 

The variations of the transformed film velocity, u*, and the shear stress, z*, are presented in 
figures 7 and 8. After the formation of the dimple, the u* and r* maxima are situated close to 
r'in. The maximum of the film velocity decreases with time, in contrast with the fully-mobile, 

100 - 

eq 

10 -- 

1.0 -- 

01 I I 
10 I00 

t* 

Figure 4. ( a * )  2 as  a function o f  time: 1, (a*) 2 = ~rg ,  r' r ' p *  d r * ;  2, (a*) 2 = ~(t* - h~).  
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Figure 5. Idealized deformation during the collision of two equal drops. 
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inertia-dominated case (Chesters & Hofman 1982) where the presence of  the dimple leads to 
increasingly large values of  velocity. 

After the dimple has established itself, film thinning develops an asymptotic character (figure 9), 
the thickness at the film center, h* , ,  and the minimum thickness, h*i., obtained from the numerical 
results, decaying approximately as 

h*n = 0.58(t*) -°8, h*i. = 4.8(t*) - '6, [19,20] 

in contrast with the constant-force case where the corresponding exponents are ( -  1/3) and ( -  2/3). 

3.3. Comparison with the Constant-force and Plane-film Cases 

The governing equations in the constant-force case can be cast into universal form (paper I) if 
expressed in terms of  the transformed variables: 

h r t 
h + = • r + - . t + = -  ) _ / ' ~  ' 2 " 3a2 w - a  #dReq 

2R~q 2 x / ~ a a  

The + and * variables are readily seen to be related as: 

[21 a-c] 

h + 2 r + 2 t + 
h * = 3 ( a * ) 2 ;  r* w/~a , ,  ~ -  x / ~ a * .  [22a-c] 

1.0 -- 

0.8 D 

0,6 

._= 

0.4 

0.2 

0 
0 

J 

I I I I I 
20 40 60 80 I00  

t* 

Figure 6. (r~./a*) as a function of time. 
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Figure 7. Variation of  the film velocity during the drainage 
process. 
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Figure 8. Variation of  the shear stress during the drainage 
process. 

Figure 10 displays the results of Yiantsios & Davis for this case, expressed in terms of + variables, 
together with those of a plane-film model (Chesters 1988; paper I) which predicts that 

1 dh  + 
(h +)------5 d T  = k, [23] 

where the constant k is of order unity. Evidently [23], taking k = 0.66, provides a good description 
just after flattening sets in (h + ~ 10 -I), becoming poorer as the dimple develops. 

Applied to the constant-velocity case and expressed in terms of * variables, the plane-film 
drainage expression becomes 

(h*)2 dt* = = 1.52. [24] 

Table 1 presents the value of ( - a */(h *~i,)2) dh  *~in/dt* in this case, following flattening at h * .~ 10- '. 
While the initial drainage rate corresponds reasonably well with [24], it subsequently becomes much 

10 

1.0 

h* 0.1 

0.01 

0.001 
0 

h*min""-..~ 

I I I I I I I I I I l I I I I I ] 

10 100 

t* 

Figure 9. hm*i. and h ~  as functions of  time. 
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t*  

Figure l0. Comparison ofthe constant-forcecase[--,Yiantsios&Davis (1990)] and the plane-filmmodel 
(©, [23] with k = 0.66). 

larger, in contrast with the constant-force case where the plane-film approximation remains 
reasonable. Physically, this might be interpreted as indicating that the thickness of the "new film" 
added during expansion of the flattened region is smaller than that of the old. 

A further difference between the constant-force and constant-velocity behaviour is the film 
thickness at which flattening sets in, which is an order of magnitude smaller in the latter case 
(h + ~  10 -2, compared with 10-1). Qualitatively this can be explained by the fact that constant- 
velocity conditions imply increasing interaction force (figure 4) so that, for a given h ÷, the driving 
force for deformation in the preceding stages of drainage is less. 

The major difference between the two cases emphasizes the importance of incorporating realistic 
boundary conditions when simulating the coalescence of colliding drops, neither the interaction 
force nor the velocity, in general, being constant. 

4. FILM RUPTURE: THE INFLUENCE OF VAN DER WAALS FORCES 

4.1. Governing Equations 

Equation [20] implies that coalescence requires an infinite time unless one or more of the classical 
approximations underlying the governing equations breaks down. Amongst these assumptions are 
the continuum approximation and the representation of the effect of long-range intermolecular 
forces by an interfacial tension confined to a mathematically thin layer at the phase boundary. 
While the continuum approximation must fail when the film thickness becomes of the order of 
molecular dimensions, the second approximation fails still earlier, the film tension becoming a 
decreasing function of the film thickness once film thicknesses become of the order of the long-range 
intermolecular interaction forces. For pure systems, the non-retarded expressions are the relevant 
ones for the small film thicknesses at which these forces become important [see, for example, 
Hiemenz (1986)]. 

IJMF 20/3--L 

Table 1. The value of -[a*/(h*.)  2] dh*n/dt* in the con- 
stant-velocity case during the thinning process 

t* h* -[a  /(hr~n) 2] dhmin/dt 
I0 0.12849 1.53 
20 0.0418 3.54 
40 0.031 8.67 
50 0.00908 I 1.26 
70 0.00533 16.53 
90 0.00363 20.74 
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Figure 11. Variation of the film thickness when van der Waals forces are acting ( A * =  10-5). 

The van der Waals forces contribute an extra force, F . ,  per unit volume of the film acting in 
the r-direction, given by (see, for example, paper I): 

A 3h 
Fw = 2~h4 Or' [25] 

where A denotes the Hamaker constant (A ~ 10-2°J typically). The force balance [4] is then 
replaced by 

0p A Oh 2 
Or -t 27rh 4 Or = -h z, [26] 

which in terms of transformed variables become 

h*Op* A* Oh* 
r * = - -  + [27] 

2 Or* h .3 Or* ' 

10 
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Figure 12. Minimum film thickness vs time for a range of A*-values, 
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hc ~ 

t 

Figure 13. Influence o f  van der Waals forces on film drainage: - - ,  actual drainage behaviour; - - -  
behaviour in the absence of  van der Waals forces. 

where 
1 A 

A* = 4~ trR2Ca 2" [28] 

Taking the same h* and * rboun d as the preceding case, the new set of  equations is solved by the 
same method for various values of  A*. 

4.2. Results 

In section 5, it is shown that the small-slope approximation requires that Cat/3<< 1. Taking typical 
values of  A and a as 10-2° J and 2.5.10 -2 N/m, respectively, the A*-values of  interest are seen to 
range from as little as 10 -8 when Roq = 1 mm and Ca = 10 -3 to 1 or more for small drops with 
very small Ca-values. 

Figure 11 depicts the drainage process in the presence of  van der Waals forces when A* = 10 -5. 
van der Waals forces first become significant where the film is thinnest, thinning is accelerated 
locally and rupture quickly follows. Figure 12 shows the effect of A* on this process and on the 
rupture time, t*.  For  the largest value of  A*, 10 -3, van der Waals forces become important around 
the onset of  flattening. 

An effective critical film-rupture thickness, h*,  may be defined as the value of  h'in which would 
be attained in the absence of  van der Waals forces after a time t* (figure 13). In paper I, it was 
suggested that hc should be given by 

(AR~q y/3 
he ,~ \ 8ntr ] " [29a] 

~:'~ 0.01 

0.10 - -  

0 I I I 
0.000001 0.00001 0.0001 0.00 I 

A* 

Figure 14. Critical film-rupture thickness, h~*, as a function of A*. 
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In transformed variables, [29a] becomes 

h* ~ - -  . [29b] 

Figure 14 indicates that [29a,b] does indeed provide a good approximation, the best-fit straight line 
on a log-log plot being given by 

h~* ~ 0.69(A*) °3377. [30] 

5. THE REGIME OF VALIDITY OF THE SOLUTION 

Both the present results and those of Yiantsios & Davis (1990) for the constant-force case are 
based on the approximations listed in section 2.1. Each of these has its regime of applicability, 
whose boundary typically corresponds to a transition to another drainage regime in which an 
alternative approximation is better. The approximation of plug flow, for example, is justified 
provided the contribution to film drainage of the parabolic part of the film-velocity profile is 
negligible in comparison with the interface velocity. For sufficiently large/~d/#-values this will no 
longer be the case and a transition will take place to the immobile-interface regime, in which 
drainage is dominated by the parabolic contribution, the interface velocity being negligible. 

In the context of the modelling of liquid-liquid dispersions, the primary question is the location 
in parameter space of the limiting surface dividing coalescing from non-coalescing collisions. The 
validity of the approximations need therefore only be considered under these limiting conditions, 
for which the drop interaction time, ti, is equal to the required time for drainage to rupture, t c. 
Since, furthermore, tc is determined primarily by the last stage of drainage, the considerations may 
be restricted to the case when h ~ he. Even then the range of possible situations is immense, since 
t~ depends on the flow type, the drop size ratio and the incidence of the colliding particles. Here 
we consider only the simplest case of equal-drop collisions in viscous simple shear, making use of 
the approximate drainage and rupture relations [24] and [29]. 

5. I. Limiting Conditions for the Coalescence of  Equal Drops in Viscous Simple Shear 

From paper I it follows that the limiting conditions for which t i = t~ correspond to 

us  ' [31l  

where f~ denotes the dimensionless shear rate: 

f~ _/a-~R [321 
O" 

(~ is the shear rate). It was also shown that the film radius a is related to f~ by 

a 
- -  ~ ( 3 f ~ )  '/2, [ 3 3 ]  
R 

so that [31] can alternatively be expressed as 
a _/ /~\ t /3 /  A \1/9 
~ ~ x / 3 / ~ d ) ~ - ~ - 5 )  " [34] 

5.2. The Approximation of  Plug Flow 

The mean velocity, up, associated with the plane Poiseuille component of the film flow is given by 

2~ 
h 2 c3p Req h 2 

Up = 12# Or ~ a 12/~ ' [35] 

while the interface velocity predicted by the plane-film model follows from continuity 

Oh r ( Ohm,,, a - - ~  
nr: = 21trhu; u =-a-; i - - g T  , ~ - z r  . [36] 
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Combining [35] and [36] and making use of [24], 

Up 1 /~d h 
,~ - -  ; [37] 

u 4v/3k/~ a 

and the approximation of plug flow is seen to be valid in the last stages of drainage, provided 

#d << 4 x / / ~ k  ~. [381 
Combination of [38] and [34], making use of the expression, [29], for he, now yields 

l-to . . . . .  3/4f 87~a R 2~ 1/6 
-/7 << t ,  LK, ~ ) .  [39] 

The right member of [39] is relatively insensitive to the values of the various physical parameters. 
Values of R of practical interest range from about 1 mm to 10/~m. Taking R = 100/tm, 
tr = 2.5.10 -2 N/m and A = 10 -20 J, [35] yields #d/Iz <<4.102, suggesting that the approximation of 
plug flow is reasonably good up to #d //z -values of order 102. 

5.3. The Neglect of Viscous Normal Stresses and of the Associated Pressure Variation 
The force balance [4] on an element of film neglects the viscous (deviatoric) contribution, ~,,, 

to the normal stress in the r-direction, while [9] neglects the corresponding contributions z= and 
(z=)d to the normal stress at the interface, together with any pressure variation, Apa, associated 
with the drop flow. 

The magnitudes of these deviatoric stresses follow from [36] together with continuity: 

I401 
OUr . - &  

"r.r,= 21~--~r =-~ 

du, 2~(O(ru,)'~= # C  h) Zzz=2~-&-z- r k Or J 2~ ~- = - - 2 z .  [411 

and 

I4 1 (~=)d=2- h- - ~ .  

Furthermore, the equation of creeping flow, [6], implies that 

Apd "~ (z=)d. [43] 

The neglect of the stresses is justified, provided these are small compared with the pressure 
difference, 2a/R~q, driving the flow. Since zr, and Zzz are of the same order, as are (Z=)d and Apd, 
only T= and (Z=)d need be considered. The two requirements thus become 

(~=)%< 1, -~<< 1. [44,45] 
2tr 
&q &q 

Making use of [24], [44] and [45] become 

~ < < 4  k, ~ < < ( 4  k)  ~ .  [46,47] 

For the limiting condition represented by [34], [46] and [47] yield 

and 

~ 2/3>> 4 o_A__~ 2/9 

[48] 

[49] 
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Like the condition [39], for applicability of the plug flow approximation, [48] places an upper 
limit on ,&/p but, since 8rr~R’/A>> 1, this limit is less severe and [48] is always satisfied if [39] is. 

Expression [49] places a lower limit on pd/p, which relates to the transition to fully-mobile 
drainage, resisted only by the viscosity of the continuous phase. Taking the previous values of (T, 
A and R, [49] requires that pd/p >> 5 - 10m3, suggesting that the neglect of viscous normal stresses 
should be a good approximation down to pL,/p-values of order 10m2. 

5.4. The Small-slope Approximation 

The largest relevant interface slope arises outside the film, where the undeformed-drop equation 
[14*] yields 

ah ah* 
Ca-“3- =--a*- 1 

8r ar* ’ 
[501 

Restriction [2] is thus satisfied, provided 

Ca”3<< 1, WI 

which quantifies the notion of a “gentle” collision. 
If [14] rather than [14*] is taken as the starting point for the above reasoning, an alternative 

expression of the small-slope requirements is seen to be 

a<< 1. 
% 

Now the restriction, [49], on p,,/p implies, via [34], a restriction on a/G: 

WI 

[531 

Since the right member of [53] is of order unity, [52] is seen to be roughly satisfied if [49] is. 

5.5. The Neglect of Inertial Forces in the Film and in the Adjacent Drop Flow 

The neglected inertial terms of the Navier-Stokes equation in the film, p au/at and pu au/&, 
which can both be shown to be of order pu2/a, may be compared with the term-apI&, which is 
of order a/&,a ( p is the density): 

&l/3, [541 

where use has been made of [24], [36] and [29]. The largest value of E arises for small drops with 
low viscosities. Taking 4 = 10 pm, p,, = 10m3 kg/ms, p = lo3 kg/m3 and the values of A and a used 
previously, E proves to be only about 10e4, so the neglect of inertial forces is clearly justified. 

The neglect of inertial forces in the drop flow adjacent to the film is equivalent to the assumption 
that this is a quasi-steady creeping flow rather than an unsteady boundary-layer flow. This, in turn, 
is justified provided the time scale, tdrop, required for such a creeping flow to adapt to changes in 
the film flow is much smaller than the time scale, tfilm, of such changes: 

fdrop -<<l. 
tfi,, 

1551 

t drop is given by the time required for the vorticity to diffuse a distance of order a (the length scale 
of the drop flow-see paper I): 

a2 
fdrop N - 9 

vd 

where vd = pd /pd. tfilm is given by 

h 
t film = _dh * 1571 

dt 
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Making use of [24], [55]-[57] lead to the requirement 

Vd~d 

4a 
hc<<-- [58] a 

Like [54], [58] is independent of the flow concerned. The numerator of the right member of [58] 
is a length scale, of order 100/~ for low viscosity liquids such as water. Since hc is also of this order 
of magnitude, [52] guarantees that [58] is satisfied. It is, however, noteworthy that for large, very 
low viscosity drops coalescing at free interfaces, for which a/P~ is of order unity and hc relatively 
large, the << sign in [58] is replaced by a >> sign. The shear exerted by the drop phase on the 
interface will then be determined by an unsteady boundary layer in the drop: a situation analysed 
by Reed et al. (1974a,b) and by Ivanov & Traykov (1976). 

5.6. The Neglect of Gravity and Continuous-phase Acceleration 
The influence of gravity on film drainage should be negligible, provided the maximum 

gravitational effect on the pressure difference across the interface, of order Apgoa, is much less than 
the pressure difference due to the interfacial tension, of order a /~q  (Ap is the density difference, 
go is the acceleration due to gravity): 

B << l, where ~ = AogoR~ [591 

In view of [52], [59] is satisfied, provided ~ is less than or of order unity. For Ap = l0 s kg/m 3 and 
a = 2.5.10 -2 N/m, this will be the case, provided R~q ~< 5 mm--a condition which is satisfied in 
virtually all cases. 

A reference frame translating with colliding drops will, in general, be an accelerated one and this 
acceleration, g, enters into the equations describing the drainage process as an additional effective 
contribution, - g ,  to the acceleration due to gravity. Typically 

U 2 
Igl ~ -~-, [601 

where U and L denote the system velocity and length scales. For large stirred vessels UZ/L is 
typically less than or of the order of g0. In small high-velocity flows, U2/L may be 2 or more orders 
of magnitude larger than go and the maximum permissible value of ~ is, accordingly, an order 
of magnitude or more smaller. In such flows, however, drop break-up will, in general, ensure that 
actual P~q-values are much smaller still, so that neglect of any influence of g on drainage is amply 
justified. 

6. CONCLUDING REMARKS 

The process of film drainage during drop collisions in liquid-liquid dispersions is determined by 
boundary conditions provided by the external flow, consisting of a time-dependent interaction force 
or approach velocity. The present results indicate the very substantial influence of these boundary 
conditions on the drainage process: drainage rates following drop flattening decrease much less 
rapidly in the constant-velocity case than in the constant-force case and differ by as much as an 
order of magnitude in the final stages of drainage. This emphasizes the importance of simulating 
the actual time-dependent boundary conditions in the modelling of coalescence in liquid-liquid 
dispersions. 

The effect of the van der Waals forces is to accelerate drainage in the thinnest zone of the film, 
rapidly leading to rupture once these forces become comparable in magnitude with the capillary 
forces responsible for the earlier stages of drainage. For cases in which flattening precedes the onset 
of van der Waals effects, the effective critical film-rupture thickness, hc, is well-predicted by the 
simple expression proposed in paper I ([28], taking an optimized coefficient [29]). The drainage time, 
to, is then given with sufficient precision for practical purposes by the use of hc in the asymptotic 
drainage expression [20]. 
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A P P E N D I X  

Surface Increase and Related Interaction Force of  Flattened Drops 

Surface increase 

Figure 5 depicts a simplification of the geometry of equal flattened drops. The thickness of the 
film has been neglected and the transition from the plane film to the spherical external interface 
approximated as abrupt. Note that this implies an infinite interface curvature at the film edge. In 
the more general case of unequal drops, the film is spherical with a radius of curvature, Re, given 
by t 1 lc]. 

Since both drops are indented, volume conservation requires that the radius of the spherical 
portion increases: R ~ R'. In the limit of small deformations, [52], the volume of the missing 
(indented) portion of this larger sphere is found from elementary geometrical considerations to be 
the same for both drops, given by nr2/4Req, where rf denotes the film radius. The value of R' then 
follows from volume conservation: 

R' r~ 
- -  = 1 + - - .  [ A 1 ]  
R 16R 3iD~eq 

The surface area of a drop now follows from the sum of its spherical portions and its increase, 
AS, proves to be the same for both drops, given by 

nr 4 
AS = 4R2--~" [A2] 

The value of rf is related to the indentation distance Z (the sum of the drop radii minus the 
separation of their centres): 

r~ 
Z = ; [A3] 

Req 

and [A2] can, therefore, be written as 
nZ 2 

A S  = - -  [ A 4 ]  
4 
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I n t e r a c t i o n  f o r c e  

The drop interaction force, F, is readily obtained from energy considerations: 

F d Z  = ~d(2AS); [A5] 

the left member representing the work done in increasing Z and the right member the resulting 
increase in the free energy of the system. Combination of [A4] and [A5] yields 

F = ~ Z .  [A6] 

It is noteworthy that, with the help of [A3], F can be expressed as 

__ 2 0" 

which is half the value obtained by multiplying the pressure in the film, 2~/R~, by the film area. 
Evidently the contribution to F of the pressure singularity associated with the infinite curvature 
at the film edge is significant. 

Making use of [17], [A6] becomes 

a 2  = R~qZ 
2 = ( V t  - h0), [AS] 

which transforms to [18]. 


